Medtech, innovation

AI in MedTech: Risks and Opportunities of Innovative Technologies in Medical Applications

By Dr. Abtin Rad
No Comments
Medtech, innovation

A review of common risks and pitfalls of incorporating artificial intelligence in medical devices and an overview of the regulatory framework.

References

  1. Merriam-Webster.com Dictionary. “Artificial Intelligence“. Merriam-Webster.
  2. Benjamens, S., Dhunnoo, P. and Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. npj Digit. Med. 3, 118 (2020). https://doi.org/10.1038/s41746-020-00324-0
  3. Jha, S. and Topol, EJ. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. JAMA. 2016;316(22):2353–2354. doi:10.1001/jama.2016.17438
  4. Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA. Künstliche Intelligenz für die Medizintechnik (Artificial Intelligence for the medtech industry). Press Release. June 2020
  5. bigdata-insider.de, Big Data Insider, www.bigdata-insider.de/was-ist-ein-neuronales-netz-a-686185/. Last accessed 15 Nov 2020
  6. www.devicemed.de, https://www.devicemed.de/ki-in-der-medizintechnik-wie-ist-das-eigentlich-mit-der-ce-kennzeichnung-a-973546/. Last accessed 15 November 2020
  7. www.elektronikpraxis.vogel.de, www.elektronikpraxis.vogel.de/vorsicht-bei-kuenstlicher-intelligenz-in-medizinprodukten-a-976526/. Last accessed 15 November 2020
  8. Kundu. S., et al. Enabling early detection of osteoarthritis from presymptomatic cartilage texture maps via transport-based learning. Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24709-24719. doi: 10.1073/pnas.1917405117. Epub 2020 Sep 21. PMID: 32958644; PMCID: PMC7547154.
  9. Wood, G. (March 2016). The Sadness and Beauty of Watching Google’s AI Play Go. Wired.
  10. Caruana, R., et al. (2015). Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’15). Association for Computing Machinery, New York, NY, USA, 1721–1730. DOI:https://doi.org/10.1145/2783258.2788613
  11. , C. Can A.I. Be Taught to Explain Itself? The New York Times.
  12. Binder A., Bach S., Montavon G., Müller KR., Samek W. (2016) Layer-Wise Relevance Propagation for Deep Neural Network Architectures. In: Kim K., Joukov N. (eds) Information Science and Applications (ICISA) 2016. Lecture Notes in Electrical Engineering, vol 376. Springer, Singapore. https://doi.org/10.1007/978-981-10-0557-2_87
  13. General Data Protection Regulation, Art.13-15 & 22, Regulation (EU) 2016/679
  14. www.informatik-aktuell.de, www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/kuenstliche-intelligenz-und-erklaerbarkeit.html. Last accessed 16 Nov 2020
  15. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32017R0745. Last accessed 16 Nov 2020
  16. Banko, M. and Brill, E. 2001. Scaling to very very large corpora for natural language disambiguation. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL ’01). Association for Computational Linguistics, USA, 26–33. DOI:https://doi.org/10.3115/1073012.1073017
  17. Obermeyer, Z., et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2015 Oct;53(2019):447-453. DOI: 10.1126/science.aax2342
  18. Antun, V., et al. (May 11, 2020). On instabilities of deep learning On in image reconstruction and the potential costs of AI. PNAS. https://doi.org/10.1073/pnas.1907377117
  19. Xiao, Q., et al. “Seeing is Not Believing: Camouflage Attacks on Image Scaling Algorithms”. In: Proc. of USENIX Security Symposium. 2019
  20. www.johner-institut.de, www.johner-institut.de/blog/regulatory-affairs/kuenstliche-intelligenz-in-der-medizin/. Last accessed: 16 Nov 2020
  21. Chen, S., et al. Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach. 1.3.2018, Elsevier Advanced Technology
  22. Jinming ZouYi Han et al., Overview of Artificial Neural Networks, Humana Press, 2009, DOI: 10.1007/978-1-60327-101-1_2
  23. Bruckner, M., et al. (2012). Static Prediction Games for Adversarial Learning Problems. Journal of Machine Learning Research
  24. Barrett, B. (February 22, 2020). “Security News This Week: A Tiny Piece of Tape Tricked Teslas Into Speeding Up 50 MPH“. Wired.
  25. Danks, D.. (February 26, 2020). “How Adversarial Attacks Could Destabilize Military AI Systems“. IEEE Spectrum.
  26. FDA, Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan, January 2021.
  27. Chinzei, K., et al. Regulatory Science on AI-based Medical Devices and Systems. Advanced Biomedical Engineering, 2018, Volume 7, Pages 118-123, May 24, 2018
  28. Benjamens, S., Dhunnoo, P. and Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. npj Digit. Med. 3, 118 (2020). https://doi.org/10.1038/s41746-020-00324-0

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *